연하장애 치료 어디까지 왔을까

Youngkook Kim, MD, PhD

Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Neurogenic dysphagia, Oropharyngeal dysphagia

2018-2021 Original article, Systematic review/Meta-Analysis

Clinical application

Known strategies: evidence put forward

Some newer strategies

Therapeutic Strategies for Dysphagia

Peripheral Electrical Stimulation

Neuromodulation

Compensatory Strategy & **Swallow Exercise**

Е

Types of Swallow Exercise

- Chin tuck against resistance (CTAR) exercise
- Shaker exercise
- Effortful swallowing
- Biofeedback
- Expiratory muscle strength training (EMST)
- Lingual exercise

Lingual / Tongue-base retraction exercise

Exercise for Upper Esophageal Sphincter Opening

Chin tuck against resistance (CTAR) exercise

Chin Tuck Against Resistance (CTAR): New Method for Enhancing Suprahyoid Muscle Activity Using a Shaker-type Exercise

https://www.alternativespeech.com

Chin tuck against resistance exercise for dysphagia rehabilitation: A systematic review

- CTAR exercise more selectively activates the suprahyoid muscle and improves swallowing function.
- It is less strenuous than Shaker exercise, it requires less physical burden and effort, allowing greater compliance.

Dysphagia (2014) 29:243-248

Effects of chin tuck against resistance exercise versus Shaker exercise on dysphagia and psychological state after cerebral infarction

Jing GAO¹, Hui-Jun ZHANG²*

CTAR exercise can significantly relieve depression and has the similar effect on improving swallowing function as compared with Shaker group.

TABLE III.—Comparison of VFSS scores in the three groups before and after intervention (mean±SD).									
Time point	Control group	Shaker group	CTAR group	χ^2 / F value	P value				
Pre-intervention	5.00±1.51	5.30±1.64	5.30±1.47	0.54	0.76				
2-week intervention	4.90±1.37	4.60±1.59	4.53±1.61	1.05	0.36				
4-week intervention	4.30±1.82	$3.17 \pm 1.84^{*\dagger}$	3.13±2.13*†	7.17	0.00				
6-week intervention	4.23±1.88	$2.87 \pm 1.94^{*\dagger}$	2.77±2.22*†	6.54	0.00				

CTAR: chin tuck against resistance exercise; Shaker: Shaker exercise.

*P<0.05 compared to pre-intervention and 2-week intervention in Shaker and CTAR groups; † P=0.00 compared to control group.

TABLE VIII.—Comparison of SDS scores amongst the three groups (mean±SD).

	Control group	Shaker group	CTAR group	χ^2 / F value	P values
Pre-intervention	48.87±6.010	49.20±6.06	49.17±6.42	0.51	0.77
6-week intervention	48.20±6.62*	44.80±4.66†§	42.47±4.22 ^{†#} \$	8.98	0.00

SDS: Self-Rating Depression Scale; CTAR: chin tuck against resistance exercise; Shaker: Shaker exercise.

*P=0.68 and † P=0.00 for pre-intervention vs. 6-week intervention in the same group; § P=0.03 and # P=0.00 compared to control group after 6-week intervention; § P=0.00 compared to Shaker group after 6-week intervention.

Cervical isometric exercises improve dysphagia and cervical spine malalignment following stroke with hemiparesis: a randomized controlled trial

Avraam PLOUMIS *, Soultana L. PAPADOPOULOU, Stavroula J. THEODOROU, George EXARCHAKOS, Panagiotis GIVISSIS, Alexander BERIS

European Journal of Physical and Rehabilitation Medicine 2018 December;54(6):845-52

Figure 2.-Isometric cervical exercises were performed in all 4 directions.

Led to more significant

pronounced improvement in

correction of cervical

alignment and more

Figure 1.—Coronal and sagittal C2-C7 Cobb angle of a stroke patient before therapy and cervical isometric exercises.

Figure 4.—Coronal and sagittal C2-C7 Cobb angle of the same patient of figure 2 at end of therapy which included cervical isometric exercises.

Alterations to Swallowing Physiology as the Result of Effortful Swallowing in Healthy Seniors

Sonja M. Molfenter¹⁽¹⁾ · Chuan-Ya Hsu² · Ying Lu² · Cathy L. Lazarus³

Dysphagia (2018) 33:380-388

Fig. 1 Pharyngeal constriction measurement example. Pixels of unobliterated pharyngeal space at maximal pharyngeal constriction are expressed as a function of the C2-4 distance squared

Fig. 2 Pharyngeal shortening measurement example. Peak laryngeal position (point 3) from C4 (point 2) in a participant-defined coordinate system (*Y*-axis through points 1 and 2)

- Pharyngeal constriction measurement: Normalized Maximal Pharyngeal Constriction Area (MPCAN)
- Pharyngeal shortening measurement
 - By Effortful swallowing ↓ Laryngeal closure duration ↓ Hyoid movement duration ↓ UES opening duration ↓ Stage transition duration ↓ Pharyngeal transit time ↓ Pharyngeal response duration

	Average treatment effect	SE	p value	Cohen's E
Kinematic measures				
Pharyngeal constriction (MPCA _N)	- 0.0005	0.0029	0.8900	-
Pharyngeal shortening (%c2-4)	- 2.629	1.0669	0.0033	0.29
Temporal measures				
Laryngeal closure duration (s)	0.3800	0.0543	< 0.0001	0.72
Hyoid movement duration (s)	0.5446	0.0676	< 0.0001	0.86
UES opening duration (s)	0.0739	0.0164	< 0.0001	0.53
Stage transition duration (s)	0.0687	0.0249	< 0.0001	0.27
Pharyngeal transit time (s)	0.1396	0.0285	< 0.0001	0.49
Pharyngeal response duration (s)	0.0713	0.0214	0.0007	0.39
Functional measures				
PAS	0.1214	0.0694	0.0713	-
NRRSv	0.0073	0.0068	0.2467	-
NRRSp	0.0072	0.0155	0.0020	0.02

Article Effect of Progressive Head Extension Swallowing Exercise on Lingual Strength in the Elderly: A Randomized Controlled Trial

Jin-Woo Park *, Chi-Hoon Oh, Bo-Un Choi, Ho-Jin Hong, Joong-Hee Park, Tae-Yeon Kim and Yong-Jin Cho

G1, tongue progressive resistance exercise group G2, tongue isometric exercise group

Does Therapy With Biofeedback Improve Swallowing in Adults With Dysphagia? A Systematic Review and Meta-Analysis

Jacqueline K. Benfield, BSc (Hons), MSc,^a Lisa F. Everton, BA (Sp & H Th) (Hons),^b Philip M. Bath, FMedSci DSc,^b Timothy J. England, MBChB, PhD, FRCP^a

Dysphagia therapy augmented by biofeedback using sEMG and accelerometry enhances hyoid displacement but functional improvements in swallowing are not evident.

https://www.chattanoogarehab.com

A Functional Oral Intake Scale (FOIS)

	Experir	nental		Cont	rol			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD To	tal Me	ean	SD T	otal	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Aoki 2015	4.75 0	.77	17	5 0.	33	14	52.6%	-0.25 [-0.65, 0.15]	-8-
Li 2016	5.1	1.2	10	2.5 1.	78	10	47.4%	2.60 [1.27, 3.93]	
Total (95% CI)			27			24	100.0%	1.10 [-1.69, 3.89]	
Heterogeneity: τ ² =3.81 Test for overall effect: Z	l; %²=16. =0.77 (<i>P</i>	13, df= =0.44)	1 (<i>P</i> <0	.0001);	²=94	4%		-	-4 -2 0 2 4 Favors (control) Favors (biofeedback)
B Hyoid dis	splace _{Ex}	emen perimei	t (cm	n)	Contro	ы		Mean Difference	Mean Difference
Study or Subgroup	Mea	n SD	Total	Mean	SD) Tota	al Weigh	t IV, Random, 95% Cl	IV, Random, 95% Cl
Huimin 2015	1.	3 0.6	17	0.9	0.4	4 1	9 27.59	6 0.40 [0.06, 0.74]	
Li 2016	1.4	5 0.26	10	1.34	0.25	5 1	0 57.19	6 0.11 [-0.11, 0.33]	
McCullough 2012 & 2013	3 19	9 072	17	1.68	0.64	4 1	7 1549	6 0.31 F0 15 0.771	

 Total (95% Cl)
 44
 46
 100.0%
 0.22 [0.04, 0.40]

 Heterogeneity: T² = 0.00; X² = 2.17, df = 2 (P=0.34); l² = 8%
 -0.5
 0.05

 Test for overall effect: Z=2.35 (P=0.02)
 Favors [control]
 Favors [experimental

Numbers with feeding tube removed

	Experimental		Contr	Control		Odds Ratio		Odds Ratio			
	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl		M-H, Rando	om, 95% Cl	
1	Denk 1997	14	19	11	14	53.0%	0.76 [0.15, 3.92]				
	Li 2016	8	10	2	10	47.0%	16.00 [1.79, 143.15]				
	Total (95% CI)		29		24	100.0%	3.19 [0.16, 62.72]				
	Total events	22		13							
	Heterogeneity: T ² =3.8	66; X *=4 .7	6, df=1	(P=0.03)	$ ^{2} = 79$	9%		0.005	01	10	200
	Test for overall effect:	Z=0.76 (P	2=0.45)					0.005	Favors (control)	Favors (biofeedback)	200

Surface Electromyographic Biofeedback and the Effortful Swallow Exercise for Stroke-Related Dysphagia and in Healthy Ageing

Sally K. Archer^{1,2,3} · Christina H. Smith⁴ · Di J. Newham¹

Fig. 1 Electrode placement. The two recording electrodes were positioned longitudinally on the anterior neck, mid-way between the mental spine of the mandible and the hyoid bone (attached to white wires), with the reference electrode to the side (attached to black wire). The self-adhesive electrode discs were then taped in place (Micropore, MidMeds, Waltham Abbey, UK; not shown)

Fig. 4 Healthy participants effortful swallow (ES) amplitude (n=82). Medians and inter-quartile ranges shown. Dotted line at 100% NS and BL = mean normalised normal swallow baseline. Asterisks on BL = significant difference between ES and normal swallow. There was a significant effect of FB (***p <0.001) and no effect of session

Dysphagia (2021) 36:281–292

Fig. 3 Effortful swallows (ES) with Feedback (FB) and without FB by stroke participants 'S' (n = 13) and healthy controls 'HC' (n = 17) for session 1 (S1) and 2 (S2) and for both combined (S1&2). Medians and IQR shown. Data is normalised to the normal swallow baseline (BL dotted line, i.e. 100%NS). There was a significant effect of task and FB with no effect of session. ***p < 0.001

Expiratory Muscle Strength Training

- Increasing the force generation capacity of the expiratory muscles (expiratory pressure (P_EMax) capacity)
- Improving pulmonary function in obstructive, restrictive pulmonary disease, and Parkinson's disease

Rule of fives

- 5 sets of 5 exhalations per session at 75% maximum expiratory pressure (P_EMax) capacity
 = 25 breaths per day
- 5 session per week
- 5-week time frame

Effects of Expiratory Muscle Strength Training on Videofluoroscopic Measures of Swallowing: A Systematic Review

Renata Mancopes,^{a,b} Sana Smaoui,^{a,c} and Catriona M. Steele^{a,c}

Penetration-Aspiration Scale

- Improvements in 5 studies
- No change in 4 studies
- Engaging the submental suprahyoid musculature
- Longer durations and higher amplitudes during the muscle activation
- Facilitating hypolaryngeal excursion for airway protection and UES opening during swallowing

Authors	Statistical approach	Result for those receiving EMST
Pitts, Bolser, Rosenbek, et al. (2009)	Wilcoxon signed-ranks test	Significant improvement (p = .01)
Troche et al. (2010) Hegland et al. (2016)	Repeated-measures analysis of covariance Repeated-measures analysis of variance	Significant improvement (p < .05) No significant change
Plowman et al. (2016) Park et al. (2016)	Repeated-measures analysis of variance Wilcoxon signed-ranks test	No significant change Significant improvement $(\rho < .05)$
Eom et al. (2017) Moon et al. (2017) Silverman et al. (2017)	Wilcoxon signed-ranks test Wilcoxon signed-ranks test Frequencies for score range reported but not compared statistically	Significant improvement (p < .05) Significant improvement (p < .05) n/a
Hutcheson et al. (2018)	Nonparametric	No significant change
Plowman et al. (2019)	Chi-square	No significant change

Note. EMST = expiratory muscle strength training; n/a = not app

Using Ultrasound to Document the Effects of Expiratory Muscle Strength Training (EMST) on the Geniohyoid Muscle

Barbara R. Pauloski¹ · Kacey M. Yahnke^{1,2,3}

- 10 healthy adults 21–57-year-old
- Protocol: Rule of fives at 75% P_EMax

Maximum Expiratory Pressure

Cross sectional area of geniohyoid muscle

Evaluation of a non-personalized optopalatographic device for prospective use in functional post-stroke dysphagia therapy

Christoph Wagner, Lydia Stappenbeck, Harald Wenzel, Peter Steiner, Bernhard Lehnert and Peter Birkholz

Fig. 1. Illustration of three exemplary dynamic exercises used in functional dysphagia therapy [9]. Left to right: "Cleaning" of the cheek pouch, elevating the tongue tip, and swiping the tongue across the upper frontal teeth row. Black arrows depict tongue motion.

Fig. 2. Display of the device. (a) front view, showing the optical sensors and the dimensions (in millimeter), (b) back view, showing the PSoC control chip and the voltage regulator. The USB connector is bent inwards solely to save space and thus cost on the printed circuit board.

Fig. 4. Example of the device placed against the hard palate. Highlighted are the first optical sensor close to the alveolar ridge and the mid-sagittal alignment.

Fig. 5. Prototypical sensor readings for each (well executed) exercise as superimposed trajectories for all channels over time (upper part) and as a surface plot, showing each channel over time with the color-encoded ADC values (lower part). Illustrated right next to each plot are the sensor activations as seen in the direction from the device to the tongue (top down) and for the frames within the dashed box.

Dose of exercise

Dose in Exercise-Based Dysphagia Therapies: A Scoping Review

Brittany N. Krekeler^{1,2,3} · Linda M. Rowe^{1,2} · Nadine P. Connor^{1,2}

- Recommendations varied greatly by exercise type.
- Further research is required to determine optimal dose ranges for the wide variety of exercise-based dysphagia interventions

GS (*)	Name of program	Frequency	Repetitions	Intensity	Duration	1st author (year) Citation number	Population(s) studied	Primary outcome(s)	<i>p</i> value(s)
*	Chin tuck against resistance (CTAR)	1 ×/day 5 days/week + "30 min/day conventional dysphagia treat- ment"	Isometric = $3 \times$ Isotonic = $30 \times$	Isometric = 60 s hold Isotonic = consec- utive repetitions	4 weeks	Park (2018) [83]	Stroke	Oral, laryngeal elevation/epi- glottic closure, residue	<i>p</i> < 0.05
*	TheraBite	3 ×/day 7 days/ week	See publication for detail	See publication for detail	During CRT up to 1 year after	Molen (2014) [84]	Head and neck cancer	Weight gain, other outcomes	p = 0.002 Weight Gain
*	CTAR + JOAR		Isokinetic: 30 × consecu- tively, 1 s per contraction Isometric: main- tained for 60 s, × 3 sets Effortful Swallow: (after 60 s rest) 10 ×	CTAR + JOAR: bar pressed to chin Effortful swallow: bar pressed to chin 50% Start intensity indi- vidualized based on dynamometry and 30 s max. Subsequent increase by self- pression of fort	6 weeks	Kraaijenga (2015) [85]	Healthy senior subjects	Chin tuck strength Jaw opening strength Anterior and posterior tongue strength Muscle volume Videofluoroscopy parameters	p = 0.005 p = 0.005 p = 0.016 and 0.08 p = 0.008 p = not significant

Table 8 Exercise recommendations. Adapted from the American College of Sports Medicine and other sources

Type of exercise	Definition	Frequency	Repetitions	Intensity	Duration
Resistance exercise	Exercises that involve concentric and eccentric muscular contraction with the goal of improve muscular strength and power	2–4 ×/day; 2–3 × days/week	8–12 for most adults, 10–15 for n and older adults, 15–20 for imp muscular endurance (which may ticular interest to the dysphagia	iddle-aged Novice to intermediate: 60–70% of 1-RM Experienced: ≥ 80% of 1-RM for experienced Older individuals: 40–50% 1-RM To improve muscular endurance: < 50% 1-RM Older individuals to improve power: 20–50% 1-RM	Specific duration of training has not been definitively deter- mined according to these guidelines. However, a sys- tematic review ^a of resistance exercise in older adults showed that most programs are between 8 and 12 weeks
Neuromotor exercise	Exercises that involve motor skills such as coordination and agility, which may be impaired in dys- phagia from neural insult	20–30 min/day, 2–3 days/week	Repetitions, intensity, duration an there is a systematic review ^b th be useful to reference. The over evidence found during review o due to the wide range of neurol categories, making this difficult	e not well defined for this type of treatment according to ACS t lists repetitions, intensity, and duration for studies included all conclusions of this study were not definitive due to varied f resistance-based neuromotor exercise. It is likely that conser ogical conditions that exist and the heterogeneity of individua to study	M guidelines. However, in their review that may findings and quality of issus on this is difficult Is in the various disease
Flexibility exercise (stretching)	Joint range of motion or flexibility	2–4 ×/each exercise, ≥ 2–3 days/week with daily being most effective	10–30 s static stretch Stretch time is recom- mended for most adults, 30–60 s for older adults,	the point of slight discomfort (feel- Not specified scle tightness)	

Table adapted from the American College of Sports Medicine's (ACSM) [118]

Patient Adherence to Dysphagia Recommendations: A Systematic Review

Brittany N. Krekeler^{1,2} · Courtney K. Broadfoot^{1,2} · Stephen Johnson⁵ · Nadine P. Connor^{1,2} · Nicole Rogus-Pulia^{1,2,3,4}

Dysphagia (2018) 33:173–184

• Average adherence rate = 21.9 ~ 51.9%

- Exercise: 13 ~ 92% = average 43%
- Food modification 36 ~ 67%

Author(s) year	Study population (<i>n</i>)	Age range (mean; ±)	Design (JAMA quality rating)	Recommendations	Adherence tracking	Adherence findings	Barriers/facilitators identified?
Leiter and Windsor (1996) [33]	Dysphagia, varied etiologies (n = 8)	69–80 (72)	Case series (4)	Swallowing recommendations (posturing, bolus size, swallow + cough, alternating food/liquid)	Observation	36% average adherence	Yes
Low et al. (2001) [17]	Dysphagia, varied etiologies (n = 140)	55–94 (77.4 and 79) ^a	Retrospective cohort (3)	Swallowing recommendations (modified foods/ liquids, techniques)	Self-report	67% adherent w/ swallow recommendation 84% adherent w/ liquid recommendations	Yes
Starmer et al. (2011) [27]	HNC (<i>n</i> = 118)	< 60 years	Retrospective cohort (3)	Participation in SLP therapy (before, during, after HNC tx)	Records reviewed	80% adherence (multidisciplinary)17% adherence (outside referral)	No
Shinn et al. (2013) [24]	HNC $(n = 19)$	31–79 (57)	Prospective cohort (4)	Exercise	Documented by SLP	32% partially adherent 13% fully adherent	Yes
Hutcheson et al. (2013) [25]	HNC (<i>n</i> = 497)	38–80 (56)	Retrospective observational (3)	Exercise	Self-report	32% partially adherent 26% fully adherent	No
Duarte et al. (2013) [26]	HNC $(n = 85)$	22–91 (60)	Case series (4)	Exercise	Self-report	67% adherent	No
Shim et al. (2013) [34]	Dysphagia, varied etiologies (n = 62)	(64.1)	Retrospective chart review (3)	Thickeners	Self-report	57% adherence (90% of inpatients, 41% of outpatients) adherent	Yes
Cnossen et al. (2014) [28]	HNC ($n = 33$, 64% participated in exercise program)	21–77 (60)	Case series (4)	Exercise	Self-report	42% low adherence30% moderate adherence27% high adherence	Yes
Cnossen et al. (2016) [29]	HNC $(n = 50)$	40–77 (61)	Prospective cohort study (2)	Exercise	Self-report (diary)	70% adherence at 6 weeks38% adherence at 12 weeks	No
Krisciunas et al. (2016) [31]	HNC $(n = 153)$	61.9 (± 9.6)	Randomized control trial (1)	Exercise + electrical stimulation	Self-report (checklist)	54% adherent	No
Wall et al. (2016) [32]	HNC (<i>n</i> = 71)	59.50 (± 6.15)	Randomized control trial (1)	Exercise (prophylactic)	Self-report (log-books), SwallowIT, clinician tracked	27% average adherence	Yes
Hajdú et al. (2017) [30]	HNC $(n = 6)$	42–67 (57)	Pilot study (4)	Exercise	Self-report (log-book, weekly phone calls)	92% average adherence	No

Electrical stimulation

Target Muscle Actions	Possible Signs and Symptoms	Possible Electrode Placements
Oropharyngeal "sling" muscles	 Anterior spillage/leakage Premature spillage residuals Pocketing, holding, stasis Nasal regurgitation 	Placement over buccal branch of facial nerve - Maximum facilitation of synergists when electrodes applied bilaterally - Sensory input increased over cranial nerves V and VII
Tongue: bolus manipulation and tongue base retraction	 Decreased bolus propulsion Premature spillage Coating tongue base and/or posterior pharynx Delayed swallow trigger Vallecular pooling 	Placement above the hyoid bone - May stimulate cranial nerve XII and facilitate tongue muscle recruitment Vertical placement above hyoid bone and over thyrohyoid muscle Horizontal placement above hyoid bone and over thyrohyoid muscle
Velopharyngeal seal	 Nasal regurgitation Residuals Delayed pharyngeal transit 	Placement over buccal branch of facial nerve - Maximum facilitation of synergists when electrodes applied bilaterally
Hyolaryngeal excursion	 Decreased hyolaryngeal excursion Penetration, aspiration Voice abnormalities Decreased UES opening Pooling, residuals 	 Placement along midline over geniohyoid muscle belly Facilitation of geniohyoid, mylohyoid and thyrohyoid muscles Vertical placement along midline Facilitation of suprahyoid and infrahyoid muscles Vertical placement above hyoid bone and over thyrohyoid muscle Facilitation of digastric and thyrohyoid muscles
Pharyngeal excursion	 Penetration, aspiration Piecemeal deglutition Residuals Decreased pharyngeal transit time 	 Horizontal placement above hyoid bone and over thyrohyoid muscle Electrode placements on attachments of middle (hyoid) and lower (thyroid) pharyngeal constrictors
UES seal opening and closing	 Delayed opening UES Decreased opening UES Premature closure UES Penetration, aspiration Pyriform pooling, residuals 	Placement along midline over geniohyoid belly Vertical placement above hyoid bone and over thyrohyoid muscle - Focus on hyolaryngeal excursion Horizontal placement above hyoid bone and over thyrohyoid muscle - Focus on pharyngeal constriction

Journal of Back and Musculoskeletal Rehabilitation 33 (2020) 637-644

Medical Devices: Evidence and Research 2018:11 21-26

UES, upper esophageal sphincter.

Am J Phys Med Rehabil 2020;99:487–494

Compensatory Effects of Sequential 4-Channel Neuromuscular Electrical Stimulation for the Treatment of Acute, Subacute, and Chronic Dysphagia in a Prospective, Double-Blinded Randomized Clinical Trial

So Young Lee, MD, PhD¹, Donghwi Park, MD, PhD², Joonyoung Jang, MD³, Eun Gyeong Jang, BS³, Jun Chang Lee, PhD³, Yulhyun Park, MD³, Seon Cho, BS³, Won-Seok Kim, MD, PhD³, Jihong Park, MD³, Bo Ryun Kim, MD, PhD⁴, Kyoung-Ho Seo, MD, PhD⁵, Sungwon Park, MD⁶, and Ju Seok Ryu, MD, PhD³

- 4-Channel (n=26) vs. Sham (n=26)
- Suprahyoid, thyrohyoid, and other infrahyoid muscles during swallowing
- Stimulation procedure
- : Channel 1, 2 stimulation \rightarrow Channel 3, 150ms later
- \rightarrow Channel 4, 250ms later
- VFSS
- : T0 (initial), T1 (1week)
- : Swallow under NMES or Sham stimulation

Compensatory Effects of Sequential 4-Channel Neuromuscular Electrical Stimulation for the Treatment of Acute, Subacute, and Chronic Dysphagia in a Prospective, Double-Blinded Randomized Clinical Trial

Pharyngeal electrical stimulation for early decannulation in tracheotomised patients with neurogenic dysphagia after stroke (PHAST-TRAC): a prospective, single-blinded, randomised trial

Rainer Dziewas, Rebecca Stellato, Ingeborg van der Tweel, Ernst Walther, Cornelius J Werner, Tobias Braun, Giuseppe Citerio, Mitja Jandl, Michael Friedrichs, Katja Nötzel, Milan R Vosko, Satish Mistry, Shaheen Hamdy, Susan McGowan, Tobias Warnecke, Paul Zwittag, Philip M Bath, on behalf of the PHAST-TRAC investigators*

	n	PES group*	Sham group	Odds ratio or median difference (95% CI)	p value				
Primary outcome (randomised part of the study)									
Patients	69	35	34						
Ready for decannulation after PES or sham (primary outcome)		17 (49%)	3 (9%)	7.00 (2.41–19.88)	0.0008				
Removal of the tracheal tube†		14 (82%)	1 (33%)	9·33 (0·62–139·57)	0.1404				
Deflation of the tube-cuff†		3 (18%)	1 (33%)	0.43 (0.03–6.41)	0.5088				

Medical Devices 2018:11 21-26

This study provides evidence that PES is effective in promoting earlier decannulation in patients with poststroke dysphagia.

Hyoid Bone Movement at Rest by Peripheral Magnetic Stimulation of Suprahyoid Muscles in Normal Individuals

Hitoshi Kagaya, MD, DMSc*; Mao Ogawa, MD*; Shino Mori, MD, DMSc*; Yoichiro Aoyagi, MD, PhD*; Seiko Shibata, MD, DMSc*; Yoko Inamoto, SLHT, DMSc⁺; Hitoshi Mori, MS[‡]; Eiichi Saitoh, MD, DMSc*

- 11 healthy subjects
- Forward displacement ↑
- Upward displacement ↑
- Median NRS score during magnetic stimulation = 1
- Noninvasive and easy
- Not require skin preparation
- Minimum level of pain.

Figure 1. A specially designed coil was placed on the submental area of the subjects to stimulate the suprahyoid muscles. [Color figure can be viewed at wileyonlinelibrary.com]

off-stimulation

on-stimulation

Effects of Transcutaneous Neuromuscular Electrical Stimulation on Swallowing Disorders

A Systematic Review and Meta-Analysis

Yuanyuan Sun, MS, Xiaoyun Chen, MS, Jianhong Qiao, MS, Guixiang Song, BS, Yuedong Xu, BS, Yan Zhang, MS, Dongmei Xu, MS, Wei Gao, MS, Yunfeng Li, MS, and Cuiping Xu, PhD

Compared with traditional therapy

There is no firm evidence to conclude on the efficacy of neuromuscular electrical stimulation on swallowing disorders.

- Overall effects
- : Moderate effect size
- : Standard mean difference (SMD) = 0.62; 95% CI
- = 0.06 to 1.17
- □ Stimulation muscle
- Suprahyoid muscles
- : Negative SMD = 0.17; 95% CI = -0.42, 0.08
- Infrahyoid muscles
- : Large effect size
- : SMD = 0.89; 95% CI 0.47, 1.30
- Supra + Infrahyoid muscle
- : Large effect size
- : SMD = 1.4; 95% = 1.07, 1.74
- □ Stimulation duration
- 45 mins or less
- : Large effect size
- : SMD = 0.89; 95% CI 0.58, 1.20

Neuromodulation

TMS

These unique features make the undamaged swallowing cortex an attractive target to facilitate dysphagia recovery. • Dysphagia seems to recover more readily than dysfunction in other systems in the brain, which could be potentially explained by its bihemispheric control.

 The swallowing cortices do not exhibit transcallosal inhibition and appear to use their bihemispheric organization to provide a redundancy for a system that is already able to innervate swallowing nuclei on both sides of the brainstem using only one hemisphere.

Bihemispheric Organization for Swallowing

Affected **Unaffected** A higher corticobulbar TV in the Mild dysphagia unaffected hemisphere was indicative of *better swallowing function* in dysphagic patients after MCA stroke. Moderate to severe dysphagia high probability Healthy control low probability

Effects of Bilateral Repetitive Transcranial Magnetic Stimulation on Post-Stroke Dysphagia

Eunhee Park ^a, Min Su Kim ^b, Won Hyuk Chang ^a, Su Mi Oh ^a, Yun Kwan Kim ^c, Ahee Lee ^d, Yun-Hee Kim ^{a,c,d,*}

Comparison between

- Bilateral 10Hz rTMS
- Ipsilesional 10Hz rTMS + Contralesional Sham rTMS
- Bilatateral Sham rTMS

 Initial Behavior Assessments Mylohyoid Motor Evoked Potentials Swallowing Function Assessments Videofluroscopic Swallowing Study 	Bilat (Ipsil + Co Unil (Ipsil + Co Sha (Ipsil + Co	teral Stimulation Gr lesional 10Hz rTMS ntralesional 10Hz rTMS ateral Stimulation G lesional 10Hz rTMS ntralesional Sham rTM m Stimulation Grou lesional Sham rTMS ntralesional Sham rTMS	oup 5) 6roup 5) p 5)	 Mylohyoid Motor Evoked Potentials Swallowing Function Assessments Videofluroscopic Swallowing Study 	Mylohyoid Motor Evoked Potentials Swallowing Function Assessments Videofluroscopic Swallowing Study
T0 Pre-Intervention Day 1		Intervention		T1 Post-Intervention Day 14	T2 Follow-Up Day 35

Randomized Trial of Transcranial Direct Current Stimulation for Poststroke Dysphagia

Sonja Suntrup-Krueger, MD,^{1,2} Corinna Ringmaier,³ Paul Muhle, MD,^{1,2} Andreas Wollbrink,² Andre Kemmling, MD,⁴ Uta Hanning, MD,⁵ Inga Claus, MD,¹ Tobias Warnecke, MD,¹ Inga Teismann, MD,¹ Christo Pantev, PhD,² and Rainer Dziewas, MD¹

ANN NEUROL 2018;83:328-340

Contralesional anodal (1mA, 20 minutes) vs. Sham tDCS on 4 consecutive days.

- Application of tDCS over the contralesional swallowing motor cortex supports swallowing network reorganization
- Early treatment initiation seems beneficial.
- tDCS may be less effective in right-hemispheric insulo-opercular stroke.

^{*}Lesioned hemispheres were aligned to left side

Areas with significant increase of swallow-related event-related desynchronization after tDCS stimulation

- Primary and secondary sensorimotor cortex
- Supramarginal gyrus Dorsolateral prefrontal cortex
- Posterior cingulate.

Lesion locations associated with negative treatment response in the tDCS group : Right-hemispheric opercular cortex, superior longitudinal fasciculus, and insula (log OR>1)

		Table 1 S	ummary: the c	haracteristics of in	ncluded studies									
Comparative	Efficacy of Non	invasive	j	Inclusion	Protocol of	Site of				Age (Year)	Days After Onset Mean \pm	Primary	Poststimulation Follow-up	
Neurostimula	tion Therapies	for Accu	te-ano	L°Subacu	Stemulation	Stimulation	Comparison	Number	Stroke Type	$\rm Mean\pmSD$	SD	Outcome	Time	Adverse Effect
Poststroke Dy	sphagia: A Sys	tematic	Revie	1. Onset 1-7 d W Dand	2 mA anodal, 30 min/d, 5 d	Unaffected swallowing sensorimotor	tDCS+ST vs sham+ST	7/7	Unilateral hemispheric infarction	79.7±10.2/ 70±11.9	3.3±1.8/ 4.0±1.9	DOSS	1 wk	No complication
Network Meta-analysis Ching-Fang Chiang, MD, ^a Meng-Ting Lin, MD, ^a Ming-Yen Hsiao, MD, ^a Yi-Chun Yeh, PhD, ^b Yun-Chieh Liang, MS, ^c Tyng-Guey Wang, MD ^a		Yang et al ⁴⁸ hD, ^b	tDCS	 Onset <2 mo Clinical diagnosis of dysphagia 	1 mA anodal, 20 min/d, 10 d	Affected pharyngeal motor cortex	tDCS+ST vs sham+ST	9/7	Unilateral hemispheric infarction	70.4±12.6/ 70.6±8.5	25.2±11.5/ 26.9±7.8	FDS	2 wk	No complication
		Shigematsu et al ⁴⁹	tDCS	 Onset >1 mo Need for tube feeding 	1 mA anodal, 20 min/d, 10 d	Affected pharyngeal motor cortex	tDCS+ST vs sham+ST	10/ 10	Any stroke	66.9±6.3/ 64.7±8.9	90/ 84	DOSS	2 wk	No complication
FacilitationHigh frequencyAnodal	Affected hemisphere	Suntrup- Krueger et al ⁵⁶	tDCS	 Onset >24 h Age ≥18 y Dysphagia confirmed by FEES 	1 mA anodal, 20 min/d, 4 d	Unaffected swallowing motor cortex	tDCS+ST vs sham+ST	29/ 30	Ischemic stroke	68.9±11.5/ 67.2±14.5	4.8±4.1/ 4.9±2.7	FEDSS	1 wk	No complication
	- Structural reserve	Khedr et al ⁴⁷	rTMS	 Onset 5-10 d Clinical diagnosis of dysphagia 	3 Hz at 120% RMT, 300 pulses, 10 min/d, 5 d	Affected esophageal motor cortex	rTMS vs sham	14/ 12	Unilateral cortical or subcortical infarction	58.9±11.7/ 56.2±13.4	5-10	DG	1 wk	No complication
InhibitionLow frequencyCathodal	Unaffected hemisphere • Compensatory • Interhemispheric inhibition	Khedr et al ¹³ (A)	rTMS	 Onset <3 mo DG grade III-IV 	3 Hz at 130% RMT, 300 pulses, 10 min/d, 5 d	Bilateral esophageal motor cortex	rTMS vs sham	6/5	Lateral medullary syndrome	56.7±16/ 58±17.5	42±29.1/ 38.5±1.4	DG	1 wk	No complication
		Khedr et al ¹³ (B)	rTMS	 Onset <3 mo DG grade III-IV 	3 Hz at 130% RMT, 300 pulses, 10 min/d, 5 d	Bilateral esophageal motor cortex	rTMS vs sham	5/ 6	Other brainstem infarction	55.4±9.7/ 60.5±11	22.4±5.6/ 25.9±5.6	DG	1 wk	No complication
		Park et al ⁴⁶	rTMS	 Onset >1 mo Dysphagia confirmed by VFSS 	5 Hz at 90% RMT, 500 pulses, 10 min/d, 10 d	Unaffected pharyngeal hot spot	rTMS vs sham	9/9	Unilateral hemispheric stroke	73.7±3.8/ 68.9±9.3	59.9±16.3/ 63.9±26.8	PAS	2 wk	No complication
		Du et al ¹⁴	rTMS (3 groups)	 Onset <2 mo Clinical diagnosis of dysphagia 	3 Hz at 90% RMT or 1 Hz at 100% RMT, 1200 pulses, 5 d	 3 Hz for affected hemisphere; 1 Hz for unaffected hemisphere 	rTMS (3 Hz) vs rTMS (1 Hz) vs sham	15/13/12	Unilateral hemispheric infarction	58.2±2.8/ 57.9±2.5/ 58.8±3.4	8/6/9	SSA	1 wk	No complication
		Park et al ¹²	rTMS (3 groups)	 Onset <3 mo Dysphagia confirmed by VFSS 	5 Hz at 90% RMT, 500 pulses, 10 min each side/ d, 10 d	Bilateral or unilateral (the affected) mylohyoid hot spot	rTMS (bilateral)+ ST vs rTMS (unilateral) + ST vs sham+ST	12/ 11/ 12	Unilateral hemispheric stroke	60.2±13.8/ 67.5±13.4/ 69.6±8.6	28.7±16.8/ 29.4±11.9/ 46.2±54.6	PAS	2 wk	No complication

Comparative Efficacy of Noninva Neurostimulation Therapies for Poststroke Dysphagia: A System Network Meta-analysis Ching-Fang Chiang, MD, ^a Meng-Ting Lin, MD, ^a Ming-Yen Hsiao, MD, ^a Yi-Chun Yeh, PhD, ^b	g et al ⁴⁴ Summary: the	Inclusion Inclusion I. Onset 1-7 d I. Onset <2 mo Clinical diagnosis of dysphagia	ncluded studie Protocol of 2 mA anodal, min/d, 5 d 1 mA anodal, min/d, 10 o	Site of Stimulation 30 Unaffected swallowing sensorimotor cortex 20 Affected d pharyngeal motor cortex	Comparison tDCS+ST vs sham+ST tDCS+ST vs sham+ST	Number 7/7 9/ 7	Stroke Type Unilateral hemispheric infarction Unilateral hemispheric infarction	Age (Year) Mean ± SD 79.7±10.2/ 70±11.9 70.4±12.6/ 70.6±8.5	Days After Onset Mean ± SD 3.3±1.8/ 4.0±1.9 25.2±11.5/ 26.9±7.8	Primary Outcome DOSS FDS	Poststimulation Follow-up Time 1 wk 2 wk	Adverse Effect No complication No complication
rTMS			nod id, i e	:DCS								
In most of the studies included, hig was used for either the affected her bilateral hemispheres to induce exc corticobulbar projections to swallor	1 mA anodal d, d 12 puls d, 5 d	All of the studies included used anodal stimulation on the affected or unaffected hemisphere for treating poststroke dysphagia.										
Better outcomes for high-frequency groups and bilateral or unaffected s	y d, s a	DCS of the pharyngea chought to	e unaff l repres accoun	entation t for the	cortex i on in the he recov	s postu e senso /ery of	lated to rimotor swallov	incro corto ving	ease ex, whi functio	ch is n.		
Du o	et al ¹⁴ rTMS (3 group	 Dysphagia confirmed by VFSS Onset <2 mo clinical 	90 , 500 pul min/d, 3 Hz at 90 1 Hz at	There is a DCS grou DCS in th	larger p p, which is meta	oroport ch may -analy	tion of a v explain vsis.	affected n the le	l side st ss effec	imula tive 1	ation in result o	the f
Park	k et al ¹² rTMS (3 group	diagnosis of dysphagia 1. Onset <3 mo s) 2. Dysphagia confirmed by VFSS	RMT, 1200 pulses, 5 d 5 Hz at 90% l 500 pulses, min each si d, 10 d	1 Hz for unaffected hemisphere RMT, Bilateral or 10 unilateral de/ (the affected) mylohyoid hot spot	rTMS (bilateral)+ ST vs rTMS (unilateral) + ST vs sham+S	12/ 11/ 1:	2 Unilateral hemispheric stroke	60.2±13.8/ 67.5±13.4/ 69.6±8.6	28.7±16.8/ 29.4±11.9/ 46.2±54.6	PAS	2 wk	No complication

Comparative Efficacy of Noninvasive Neurostimulation Therapies for Acute and Subacute Poststroke Dysphagia: A Systematic Review and Network Meta-analysis

Ching-Fang Chiang, MD, $^{\rm a}$ Meng-Ting Lin, MD, $^{\rm a}$ Ming-Yen Hsiao, MD, $^{\rm a}$ Yi-Chun Yeh, PhD, $^{\rm b}$ Yun-Chieh Liang, MS, $^{\rm c}$ Tyng-Guey Wang, MD $^{\rm a}$

				%
Author			ES (95% CI)	Weight
tDCS vs. Placebo				
Kumar 2011			1.35 (0.15, 2.55)	3.41
Yang 2012			-0.13 (-1.12, 0.86)	4.27
Shigematsu 2013		- <u>-</u>	0.81 (-0.11, 1.73)	4.60
Suntrup-Krueger S 20	018	-	0.60 (0.08, 1.12)	6.95
Subtotal (I-squared =	= 20.8%, p = 0.285)	$\langle \diamond \rangle$	0.61 (0.14, 1.08)	19.23
rTMS vs. Placebo				
Khedr et al.2009		-	2.41 (1.36, 3.46)	4.01
Khedr et al.2010 -A			1.22 (-0.13, 2.56)	2.94
Khedr et al.2010 -B			1.16 (-0.17, 2.49)	2.98
Park JW 2013			0.54 (-0.40, 1.49)	4.47
Du 2016			0.77 (0.06, 1.48)	5.78
Park E 2017			0.84 (0.11, 1.57)	5.65
Lim 2014			1.00 (0.24, 1.76)	5.47
Subtotal (I-squared =	= 30.2%, p = 0.198)	\diamond	1.06 (0.64, 1.47)	31.31
sNMES vs. Placebo				
Lim 2014			- 1.07 (0.35, 1.79)	5.69
Xia 2011			1.23 (0.75, 1.71)	7.23
Park JW 2012	•	— — — i	-0.47 (-1.41, 0.47)	4.50
Lee 2014		-	1.01 (0.46, 1.57)	6.74
Meng P 2017			0.50 (-0.27, 1.27)	5.40
Subtotal (I-squared =	= 65.0%, p = 0.022)	\diamond	0.76 (0.26, 1.26)	29.56

rTMS, tDCS, and surface NMES were effective for treating poststroke dysphagia.

Effect size: rTMS > surface NMES > tDCS

Effects of Neurostimulation on Poststroke Dysphagia: A Synthesis of Current Evidence From Randomized Controlled Trials

Ivy Cheng, PhD ^D; Ayodele Sasegbon, MBChB; Shaheen Hamdy, PhD

Overall effects

: 0.69; 95% CI = 0.50, 0.89

- rTMS: 0.73 (largest effect); 95% CI = 0.49, 0.98
- PES: 0.68; 95% CI = 0.22, 1.14
- **tDCS**: 0.65; 95% CI = 0.25, 1.04

Effect over time

- Most significant within First 2 months (rTMS, tDCS, PES)
- Lack of studies reporting long term outcome
- Based on Chronicity of stroke
- < 2wks: rTMS \approx tDCS \approx PES
- 3wks-2months: tDCS (largest effect)
- > 3months: no report

Based on Stimulation hemisphere

- Bihemispheric stim: 0.93; 95% CI = 0.53, 1.33
- Bihemispheric (> ipsilesional or contralesional)
- Vicariation (compensatory reorganization of the unaffected hemisphere) vs. Interhemispheric competition vs. Bimodal balance-recovery model
- Based on Stimulation hemisphere and Frequency
- Ipsilesional High-freq rTMS: 0.83, 95% CI = 0.14, 1.52
- Contralesional Anodal tDCS: 1.04; 95% CI = 0.54, 1.53

Summary

- Shaker exercise
- CTAR exercise
- Effortful swallowing
- Biofeedback
- EMST

¢

- NMES
- PES

Neuromodulation

- rTMS
- tDCS

Future researches are needed to shed light on

Dose

: frequency, repetition, intensity

□ Adherence

□ Electrode placement

: according to abnormal physiology

Peripheral Electrical

Stimulation

□ Mechanisms of action

: Bihemispheric control : One hemisphere innervates both sides

of brain stem

.....

□ Long-term outcome >3 months